0. Derive the orbital velocity of a satellite around the earth (express it in terms of G, m, R).

1. Derive the escape velocity of a satellite around the earth (express it in terms of G, m, R).

2. Calculate the net force acting on m_1 for each case:
 - $m_1 = 10^{15}$ kg
 - $m_2 = 10^{8}$ kg
 - $m_3 = 10^{11}$ kg

 a)
 - Diagram showing m_1, m_2, and m_3 with distances 10^3 m and 2.10^3 m.

 b)
 - Diagram showing m_1, m_2, and m_3 with distances 10^3 m and 2.10^3 m.

 c)
 - Diagram showing m_1, m_2, and m_3 with distances 1.6 m and 2.10^3 m.
(2) Derive $g = 9.8 \text{ m/s}^2$ and obtain all necessary values from your book or the Web.

(5) Derive g for the moon.