Given 3 vectors: \(\vec{W}, \vec{F}, \vec{N} \) whose magnitudes are: 10, 3, 5

Obtain the following:

1. \(\vec{W}, \vec{F}, \vec{N} \) in component notation in coordinate system \(S \)

2. \(\vec{W}, \vec{F}, \vec{N} \) in component notation in coordinate system \(S' \)

3. \(\vec{R} \) such as \(\vec{R} = \vec{W} + \vec{F} + \vec{N} \)
 in coordinate system \(S \) (Resultant Vector)

4. \(\vec{R} \) such as \(\vec{R} = \vec{W} + \vec{F} + \vec{N} \)
 in coordinate system \(S' \) (Resultant Vector)

5. \(\vec{E} \) such as \(\vec{W} + \vec{F} + \vec{N} + \vec{E} = \vec{0} \)
 in coordinate system \(S \) (Equilibrium Vectors)
6. \(\mathbb{E}^6 \) such as \(\vec{W} + \vec{j} + \vec{N} + \vec{e} = 0 \) in coordinate system \(S' \) (EQUILIBRANT VECTORS)

7. Explain in words the relationship between \(\vec{R} \) and \(\vec{E}^6 \)

8. Express MATHEMATICALLY the relationship between \(\vec{R} \) and \(\vec{E}^6 \)

9. Compute: \(\vec{W} \cdot \vec{j}, \vec{j} \cdot \vec{N} \)

 Deduce the relationship between \(\vec{j} \) and \(\vec{N} \) based on the results of the dot product.

10. Compute:
 \[
 \begin{cases}
 \vec{P} = \vec{W} \times \vec{N} & \text{using a } 3 \times 3 \\
 \vec{R} = \vec{N} \times \vec{W} & \text{matrix}
 \end{cases}

 What is the relationship between \(\vec{P} \) and \(\vec{R} \)?

11. Find the parallel component of \(\vec{f} \) along a line \(L \) whose direction is 60° with respect to the \(y' \) going clockwise using \(\vec{f}^p = \vec{f} \cdot \hat{e} \) \(\hat{e} \) with \(\hat{e} \) being a unit vector along \(L \).

12. Deduce \(\vec{f}_1 \): the perpendicular component of \(\vec{f} \) with respect to \(LC \) using \(\vec{f} = \vec{f}_1 + \vec{f}_\perp \).