Vectors I

\[|\vec{f}| = 5 \quad \vec{f} \perp \vec{N} \]
\[|\vec{w}| = 4 \]

The system is at equilibrium.

1. Express \(\vec{f} \), \(\vec{N} \), and \(\vec{w} \) in component notation.
2. Calculate the resultant vector \(\vec{R} \) defined as \(\vec{R} = \vec{f} + \vec{w} \) in component notation.
3. Deduce \(R \) and \(\theta_R \) (direction).
4. Deduce the equivalent vector \(\vec{E} \) in both magnitude/direction and in component notation.
5. What is the relationship between \(\vec{E} \) and \(\vec{N} \)?
Based on this new coordinate system:
(Same given vectors / same equilibrium conditions)

5. Express \vec{f}, \vec{N} and \vec{W} in component notation.

6. Calculate the resultant vector \vec{R} defined as $\vec{R} = \vec{f} + \vec{N}$ in component notation.

7. Deduce the equilibrium vector \vec{E} in component notation.

The system is at equilibrium \vec{B}
(i.e. $\vec{F} = \vec{0}$)

$|\vec{C}| = 2$

8. Calculate $|\vec{B}|$ and $|\vec{A}|$.