1. Given the following vectors

\[\vec{A} \perp \vec{B} \]
\[A = 4 \]
\[B = 3 \]
\[P = 5 \]

Express \(\vec{A}, \vec{B} \) and \(\vec{P} \) in component notations.

2. Calculate the resultant vector \(\vec{R} \) of \(\vec{A}, \vec{B} \) and \(\vec{P} \).

3. Obtain a fourth vector \(\vec{W} \) such that the sum of \(\vec{A}, \vec{B}, \vec{P} \) and \(\vec{W} \) is zero.

4. Calculate the parallel component of \(\vec{A} \) with respect to a line \(\ell \) whose direction is 45° from the x-axis.