1. \(m_p = 0 \text{ kg} \)
 \(m_A = 5 \text{ kg} \)
 \(m_B = 10 \text{ kg} \)
 No friction

 If starting from rest,
 a) What is the acceleration of the system?
 b) What is the velocity of \(B \) after \(t \) seconds?
 c) What is the velocity of \(A \) after \(t \) seconds?
 d) Redo c) using energy (for good karma).

2. \(m_A = 20 \text{ kg} \)
 \(m_B = 5 \text{ kg} \)
 \(\mu_s = 0.5 \)
 \(\mu_k = 0.2 \)
 \(\theta = 30^\circ \)

 If starting from rest, \(A \) slides down the incline plane for 2 meters, what is then its velocity?

3. \(m = 5 \text{ kg} \)
 \(h = 2 \text{ m} \)
 No friction

 How high does \(m \) go up the incline?

 \(\mu_s = 0.7 \)
 \(\mu_k = 0.5 \)
4. \(h = 3 \text{ m}\)

\(d = 5 \text{ m}\)

\(k = 100 \text{ N/m}\)

\(\mu_s = 0.7\)

\(\mu_k = 0.5\)

\(m = 5 \text{ kg}\)

By how much does the spring compress?

5. \(d = 2 \text{ m}\)

\(\mu_s = 0.5\)

\(\mu_k = 0.2\)

\(m = 5 \text{ kg}\)

\(\Delta x = 0.5 \text{ m}\)

\(\theta = 30^\circ\)

\(m\) is standing from rest, slides down and compresses the spring by \(\Delta x\) before stopping. What is \(k\)?

6. \(k = 100 \text{ N/m}\)

\(\text{length of spring, uncompressed: 2 m}\)

\(\text{length of compressed spring: 0.5 m}\)

\(d = 2 \text{ m}\)

\(m = 5 \text{ kg}\)

Standing from rest, \(m\) will slide up the ramp due to the compressed spring. As it leaves the ramp (where there is friction \(\mu_s = 0.9, \mu_k = 0.7\))
it will follow a projectile motion style. Find y (max height) and x (range).

No friction.

This is a question from the book. If the object is a ray or a string to slide down the surface (semi-circle) it will eventually leave the surface at point B. Find the angle θ at which this occurs.

Unstretched position

Stretched new position

from this new position (after), the block is released from rest and is going to slide back to its unstretched position x_1. As it slides back to the position of x_1, it is subjected to the

friction force.
What is the work done by ALL forces from the position t_2 back to position t_1?

\[W = \int_{t_2}^{t_1} F \cdot ds \]

Where:
- F is the forces acting on the object.
- ds is the displacement.

\[W = \int_{t_2}^{t_1} (F_x \cos \theta + F_y \sin \theta) \, ds \]

Parameters:
- F_x and F_y are the horizontal and vertical components of the force, respectively.
- θ is the angle the force makes with the horizontal.
- ds is the displacement along the path.
- W is the work done.

Equations:
- $F_s = kx$
- $P = 200 \text{ N}$
- $m = 5 \text{ kg}$
- W: weight
- N: normal force (unknown magnitude)
- $s = 50 \text{ m}$

\[W = \int_{t_2}^{t_1} (F_x \cos \theta + F_y \sin \theta) \, ds \]